

International Press-in Association

Disaster Countermeasures

IPA Booklet Series

Disaster Countermeasures

International Press-in Association

Preface

As of mid-2023, natural disasters worldwide have already amounted to over \$190 billion globally. In the first half of 2023 alone, these disasters cost roughly \$194 billion. In 2022, the economic loss due to natural disaster events worldwide reached approximately \$313 billion. A disaster encompasses various events, such as drought, floods, volcanic activity, earthquakes, extreme weather, extreme temperature, landslides, dry mass movements, and wildfires. These events cause significant damage and disruption to normal life. Therefore, disaster countermeasures are crucial for safeguarding lives, property, and communities in the face of natural or man-made calamities. In response to the needs, International Press-in Association was motivated to publish this IPA Booklet Series on Disaster Countermeasures.

On behalf of the IPA Publicity Committee and International Press-in Association, I would like to express my thank you to all contributors to the articles. For this booklet, several past disaster experiences such as from 2011 Great East Japan Earthquake and tsunami and sinkholes in Florida had been highlighted. Important aspects such as damage and effectiveness of coastal structures, new policies, challenges for earthquake and tsunami resilience enhancement, sinkhole detection and characterization and safety index for natural disasters will be a central discussion for this booklet.

This booklet is suitable for engineers, professionals, academicians, policymakers, research students, technologists and those who are interested to embark on a journey of newer technology and potential applications for disaster countermeasure activities all over the world. Hopefully, the publication will supplement the readiness of engineering society in facing future environmental disruptions, natural disasters, and new coming challenging situations. Thank you and do enjoy your reading.

Nor Azizi Bin Yusoff

Vice president of IPA Chair of the Publicity Committee

Contributors

Professor Masahiko Isobe	Professor Emeritus, Kochi University of Technology Professor Emeritus, The University of Tokyo
Professor Masanori Hamda	Emeritus Professor, Waseda University
Professor Boo Hyun Nam	Professor, Kyung Hee University Courtesy Professor, University of Central Florida
Assistant Professor Yong Je Kim	Assistant Professor, Lamar University
Professor Kazuya Itoh	Professor, Tokyo City University
Professor Mamoru Kikumoto	Professor, Yokohama National University
Professor Tomofumi Koyama	Professor, Kansai University
Professor Ikuo Towhata	Visiting Professor, Kanto Gakuin University
Dr. Masayuki Koda	Director, Structure Technology Division, Railway Technical Institute (RTRI)
Professor Reiko Kuwano	Professor, Institute of Industrial Science, The University of Tokyo
Dr. Toshiharu Hirose	Manager, Research Section, Ichikawa Plant, Kubota Corporation

Note: Minor modifications have been applied to the original articles.

Contents

1 2011 Great East Japan Earthquake Tsunami and Future Tsunami Disaster Mitigation Masahiko Isobe

1.1	Tsunami Generated by Great East Japan Earthquake	1
1.2	Damage and Effectiveness of Coastal Structures	3
1.3	New Policy for Tsunami Disaster Reduction	4
1.4	Preparation for Future Nankai Trough Earthquake Tsunami	6
1.5	Conclusion	7
References		7

2 Measures for Earthquake- and Tsunami-Resilience Enhancement of Industrial Parks in Bay Areas Masanori Hamada

2.1 Damage t		e to Industrial Parks during Past Earthquakes	9
	2.1.1	Damage to oil tanks caused soil liquefaction and its induced ground	9
		displacement	
	2.1.2	Fires of tanks caused by long period earthquake ground motion	11
	2.1.3	Explosions of tanks caused by the short period earthquake ground	13
		motion	
	2.1.4	Fires of oil tanks due to tsunami	14
2.2	Damag	e Assessment of Industrial Parks in The Tokyo Bay	15
	2.2.1	Soil liquefaction and ground displacement	15
	2.2.2	Long-period components of earthquake ground motion	17
	2.2.3	Simulation of diffusion of oil in the Tokyo bay	18
2.3	Measu	res and Challenges for Earthquake and Tsunami Resilience	20
	Enhand	cement of Industrial Parks	
	2.3.1	Countermeasures against earthquake and tsunami	20

2.3.2	Policies by the Japanese government for the enhancement of 2	23
	earthquake- and tsunami-resilience of infrastructure and industrial	
	parks	

2.4 Conclusions: Recommendations for Promotion of Earthquake and Tsunami 24 Resilience Enhancement of Industrial Parks

References

25

3 Review and Practice of Sinkhole Hazard Investigation: Central Florida Case Study Boo Hyun Nam and Yong Je Kim

3.1	Introd	uction	27
3.2	Florid	a's sinkhole type and mechanisms	29
3.3	Sinkh	ole detection and characterization	30
3.4	State-of-the-art sinkhole research in Florida		33
	3.4.1	CPT-based sinkhole vulnerability evaluation	33
	3.4.2	In-situ groundwater monitoring	35
	3.4.3	Sinkhole numerical analysis	35
	3.4.3	Sinkhole hazard mapping	37
3.5	Concl	usion	38
Fundir	ng		39
Ackno	wledger	nents	39
References			39

4 Gross National Safety Index for Natural Disasters (GNS) Kazuya Itoh, Mamoru Kikumoto and Tomofumi Koyama

Introduction		43
GNS C	oncept	46
4.2.1	Definition of GNS	46
4.2.2	Exposure	47
4.2.3	Vulnerability	49
	Introdu GNS C 4.2.1 4.2.2 4.2.3	IntroductionGNS Concept4.2.1Definition of GNS4.2.2Exposure4.2.3Vulnerability

4.3	Natural	disaster risks at East Japan area evaluated by GNS	51
	4.3.1	Exposure	51
	4.3.2	Vulnerability	53
	4.3.3	GNS	54
4.4	Conclu	sions	55
4.5	Acknow	vledgements	55
Referen	ces		55

5 Contribution of Geotechnical Engineering towards Recovery from Damage Caused by the 2011 Tohoku Earthquake - Summary of the 2019 Ishihara Lecture in Rome -Ikuo Towhata

5.1	Introduction	59
5.2	Seismological Aspects of the 2011 Tohoku Earthquake	60
5.3	Geotechnical Damage	63
5.4	Ground Improvement to Mitigate Liquefaction Risk in Existing Residential	70
	Areas	
5.5	Construction of Elevated Ground in Tsunami-hit Areas	74
5.6	Conclusion	75
Referei	nces	76

6 Disaster Countermeasures and Recovery Technology for Existing Railway Structures Masayuki Koda

6.1	Introdu	action	79
6.2	Charac	teristics and issues of past earthquake damage and rain damage	79
6.3 RTRI's disaster countermeasures - Pre- and Post- disaster action		s disaster countermeasures - Pre- and Post- disaster action	83
	6.3.1	Pre-disaster diagnosis and reinforcement technology	84
	6.3.2	Post-disaster diagnosis and reinforcement technology	87
6.4	Toward	d further improvement of resilience	89

6.5	Conclusions	91
Ref	ferences	92
7	Subsurface Cavities and Road Cave-ins	
	Reiko Kuwano	
71	Inter du sti su	05

7.1	Introduction	95
7.2	Road cave-ins in urban area	95
7.3	Evaluation of collapsing risk	100
7.4	Repairment of subsurface cavity	103
7.5	For road policy quality improvement	103
References		103

8 Steel Pipe Piles, Tubular Sheet Piles, Steel Sheet Piles Confronting Natural Disasters

Toshiharu Hirose

8.1	Steel pipe piles, tubular sheet piles and steel sheet piles in earthquake	105
	disasters	
8.2	Steel pipe piles, tubular sheet piles, and steel sheet piles in the case of	125
	typhoon and heavy rain disasters	
8.3	For future disaster prevention and mitigation (the roles required of steel pipe	129
	piles, tubular sheet piles, and steel sheet piles)	
8.4	Conclusion	131
Referen	ices	131