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ABSTRACT: In recent years, deterioration due to salt damage in underground transmission tunnels which
locate near coastal areas has been reported. In the case of the open-cut construction, earth-retaining walls are
adopted at the time of excavating workspace. It is expected that the earth-retaining wall may protect under-
ground transmission structures from the stray current. In this study, the macro-cell corrosion of the under-
ground structures is investigated and the possibility of anti-corrosive effect by inserting sheet piles or utilizing
existing steel plates is experimentally evaluated. Specimens were prepared by using the mixture made from
starch and water to represent soil and steel plates to stand for structures with sheet piles. A simple systematic
corrosion experiment was performed. The external charge was applied and ion profiles are measured, and cor-
rosive states were observed. By electrically jacking sheet piles, the suppressing polarization effect with sheet
piles against corrosion was found from the experiment.

1 INTRODUCTION circuit. Speaking of anti-corrosion methods of
reinforced concrete, as commonly used methods, the
1.1 Background cathodic protection in use of sacrificial anodic mater-

ials and desalination are being applied (Allen &
Larry 2001, Cao 2008).

They are somehow local scale means focusing
on the anodic and cathodic polarization whose
distance is not large (Hsu et al. 2000). In reality,
considering the gaps of natural potentials (differ-
ent metals, ion concentrations, etc.) or external
electric charge such as the stray current, the
macro-cell corrosion of larger sizes took place
(Otsuki et al. 2007, Chen et al. 2017). For under-
ground reinforced concrete, multi-ions’ interaction
may exist in the pore solution such as Na®, K",
Mg**, SO,*, seawater (CI) and cement hydrates
of Ca®", AI’", OH", Si*". As these ions have
much to do with concrete solid, it is required to
consider the multi-ion kinetics when we intend to
actively control the electric potential which affects
structural reinforced concrete (Bazant 1979a, b).
This issue has been the engineering problem when
railroad tracks are operated with electrical energy
(Chen et al. 2017, Wang et al. 2017).

The objective of this study is to verify the macro-
cell corrosion of underground facilities and to dis-
cuss the feasibility of using steel sheet piles as an
anti-corrosion method. Experiments with specimens
made of pseudo-concrete materials were reported
(Maekawa et al. 2019, 2020, Aoki et al. 2020). Here,
we may see the locations of polarized anodic-

The urban tunnels for the underground transmis-
sion system to contain cables usually have two
types: excavation tunnels and shield ones. The
former ones are constructed by producing open
spaces with steel sheet piling and constructing the
RC ducts thereafter in the workspace followed by
backfill. They are electricity facilities of import-
ance to ensure the stable energy supply in urban
areas (see Figure 1). They were mostly developed
for stable power supply during the period of high
economic growth in 1960s. Some of the under-
ground tunnels which have passed over 40 years
have corrosive deterioration (Enya ef al. 2011a, b,
Liu et al. 2018). The deterioration caused by sea-
water intrusion has been reported for the under-
ground shield tunnels near seashores (see
Figure 2).

The groundwater including the detrimental ions
flows in the tunnels through segment joints, and it
remains at the lower part of the underground tunnel,
and steel devices and reinforcement corrode accord-
ingly (Aoki et al. 2019). For the open-cut construc-
tion, sheet piles are driven in the foundation and
earth-retaining walls are established during excava-
tion of the workspace (see Figure 3). It is expected
that these sheet piles may protect the tunnel struc-
tures suffering from the toxic substance and corro-
sion due to the stray current or large-scale electric
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Figure 1. Interior of utility duct by shield tunneling.

Figure 2. Example of corrosion by salt damage.

cathodic reactions which accompany corrosion prod-
ucts and hydrogen gas. The authors focus on the
ionic concentration, since the rising ionic concentra-
tion caused by electric protection may deteriorate
concrete solid such as ASR (Takahashi et al. 2016).
Through different cases, we aim to propose an
effective anti-corrosion method with steel sheet
piles.

1.2 Scheme of development

A general flow of the research plan is summarized in
Figure 4 to reach a goal of assessing the macro-cell
corrosion with integrating the electric field and ionic
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Figure 3. Support system during excavation.

Final goal : Development/Proposal of the analytical system of macro-cell
corrosion with integrating the electric field and ions’ kinetics
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Figure 4. Examination flow.

kinetics. A macro-cell circuit generally brings about
severe corrosion which may deteriorate serviceabil-
ity and ultimate states of underground structural con-
crete. Electric potential gaps among soil, structure
and adjacent facilities will be a source of a large-
scale circuit which produces anodic and cathodic
polarization. In addition, various ions exist in the
soil. Seawater ingredients are included in ground-
water near the shore (Otsuki et al. 2007). When
plural ions exist, the ionic equilibrium may produce
self-non-uniform potentials. As the multi-ion kinet-
ics are affected by the electrical field as well and
also have an impact on the electrical circuit, which is
the coupled effect of electrical field and chemical ion
field (Elakneswaran & Ishida 2014).

The electric field and the ion are closely con-
nected to be described by the Nernst-Planck theorem
(Na & Xi 2019). Then, the numerical scheme to con-
sider the relation of the electric potential field and
the ion concentration gradient is required. In this
study, the experiment was carried out to verify the
macro-cell corrosion system in association with ion
profiles and the locations of anodic-cathodic polar-
ization. The experimental facts serve to examine the
qualitative understanding for sheet pile usages as
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Figure 6. Sampling points.

direction on both right and left sides; ® Case 3 had
a similar arrangement as Case 2 but the difference was
Figure 5. Schematic of non-countermeasure (Case 1). that the sheet piles were connected with metal wires;
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®, ®: Case 4 and 5 had similar arrangements with
Case 1 but the iron plates had different angles with the
external charge direction (45° and 90°). It should be
noted that Case 1, the referenced case was simulating
the underground tunnels without any protection as
shown in Figure 6. Case 1, 2 and 3 were performed to
confirm the anti-corrosion effect when adopting sheet
piles on the sides of the underground tunnel. Case 4
and 5 were adopted to investigate the macro-cell corro-
sion distribution with different directions of the stray
current.

2.2 Electrical charge and ion measurement

The external charge of 6V was applied to the elec-
trode with 4 hours for Case 1, 2 and 3 while 40
hours for Case 4 and 5. The pH and several ions’
concentrations were measured at Oh, 2h and 4h
after charging. The pH value was measured with
a pH sensor. And the chloride testing tubes were
used for measurement of chloride ions while the
electronic sensors were utilized to measure the
sodium and calcium concentrations. The measure-
ment points are shown in Figure 6 where the green
points mean the measured positions of Na®, Ca®"
and pH. The red points mean the measured posi-
tions of Na*, Ca®*, pH and CI". The measurement
points of CI” become less than other items because
the number of CI testing tubes was limited. Sam-
ples were taken out and diluted by 100 times to
match the limit requirement of the measurement
range of measuring sensors for sodium and calcium
ions.

3 RESULTS AND DISCUSSIONS

3.1 Visual evaluation of corrosion

The results of macro-cell corrosion were given in
Figure 7. An obvious polarization was captured
where the anodic regions showed oxidation of iron
and production of rust while air bubbles (hydrogen)
were released at the cathodic regions. Compared
with the corrosion products of Case 1, it turned out
that the quantity of rust at anode was much less in
Case 2 or 3 by naked-eye observation. As a result, it
indicated that the underground tunnel (horizontal
steel plate) was protected by the sheet piles (vertical
steel plates). In this paper, quantitive observation
was the focus thus the precise corrosion amount was
not measured.

Furthermore, the anti-corrosion effect was more
effective if connecting the sheet piles with metal
wires (Case 3). Case 4 and 5 showed the symmetric
properties of the anodic and cathodic polarization.

3.2 Ion concentration profiles

The description of concentration change with time
are shown together with the corrosion conditions in
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Figure 7. Summaries of the corrosion conditions.

Figure 8. The measured ion concentrations are
shown in Figure 9-12. The samples were diluted
100 times with water.

In Case 1, the ion concentration changes were
found in both anodic and cathodic regions, which
could be explained by the polarization reactions:

Ca2* and CI increased
pH decreased.
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Figure 8. Description of the measured ion concentration.
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Figure 9. Measured value of pH.

hydroxide ions were consumed in anode and created
in cathode; Cation Na' gathered towards cathode
while moved away from anode; Oppositely, CI
increased near anode while decreased near cathode.
These phenomena could be well explained so far.
However, the notable point was Ca®' concentration
in the experiment. It was found that Ca®" showed an
opposite result which increased near the anodic elec-
trode. The reason was explained in Figure 13: as
anion, OH" ion moved towards the anodic electrode
and resulted in the increased ion concentration, see
the black curve in Figure 13. Then the OH™ ion near
anode would with Fe?" ion, which was generated
from the combine oxidation of the anode material —
steel. Then OH™ ion would decrease near the anode
as the red curve in Figure 13. At the same time, cat-
ions Ca®" moved away from anode and met the
coming OH™ ions and combined into Ca(OH), and
precipitated into white crystal. As a result, some Ca*"
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Figure 10. Measured value of sodium ion concentration.

ions were trapped near the anode, which lead to an
increasing amount of Ca”" concentration. This phe-
nomenon was also captured by the previous experi-
ment by Maekawa et al. (2020), as Figure 14.

4 PROPOSAL OF ANTI-CORROSION SYSTEM

From the experiment, the proposal of the anti-
corrosion system is the modification of Case 3. In
a practical application, it is suggested to apply the
electrical charge to the sheet piles as illustrated in
Figure 15. For example, as corrosion takes place
on the left-bottom of the underground facilities
because of stagnant salty water, it is possible to
apply anodic electrode on the corroded side (left),
while the cathodic electrode on the opposite
(right). From the knowledge obtained from the
experiment, the corrosion part will be protected
(cathodic reaction) while a new corrosion would
happen on the top-right because of inevitable
polarization.



S Casel

5150 | ~-@-0h -#-2h -A-6h
&

L]

<

0 50 100 150 200
Distance from anode (mm)

Case2

Ca2+(mg/L)
2 28 2 8

-0h =2h —4h!

"

<

0 50 100 150 200
Distance from anode (mm)

Case3

Ca2+(mg/L)

100 150
Distance from anode (mm)

Figure 11. Measured value of calcium ion concentration.

However, it would be acceptable if the corrosion
part would be transferred from the mechanically-
risky place to non-problematic places (Fan et al.
2020). Thus, through this systematic macro-cell ana-
lytical method, the corrosion could be controlled not
locally but with consideration of the wider domain
(underground structures, sheet piles and soil founda-
tion). Although voltage is not directly applied to the
sheet pile in Case 3, but it indicates that the under-
ground tunnel is protected. Meanwhile, the protected
place would have increased concentration of cation
such as K" or Na" as well as the alkalinity, which
may lead to problems of alkali-silica reaction for the
concrete. Thus, it is of great significance to have an
overall understanding of the coupled chemical and
electrical fields as well as the mechanical issue so as
to propose the optimized anti-corrosion method.

In current study, the sheet piles are adopted as the
anti-corrosion protector. It should be noted that the
cost might be quite different in terms of whether the
sheet piles are already existing in the ground, or they
need additional execution of inserting. Especially, this
paper would like to discuss the possibility of using
existing sheet piles, which are left in soil after con-
struction to prevent the consolidation of adjacent
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Figure 14. Observation of Ca(OH), precipitation (Mae-
kawa et al. 2020).

foundation (JASPP, 2017). Then the cost is mainly
coming from the impressed charge, which might be
low to trigger the reverse macro-cell current depending
on the present circuit. As an important factor, soil sat-
urated with underground water is required to assure
the diffusivity of ions and thus the conductivity of
ground as the electrolyte.

5 CONCLUSIONS

(1) The experiment was conducted with starch speci-
mens and steel plates under external charge to
simulate the underground systems including tun-
nels, sheet piles and soil foundation. The polariza-
tion locations and change of ion concentrations
were observed, which obeyed the electrochemical
theory.

(2) Besides the common sense where anions gather
near anode and cations gather near cathode, the
tendency of increasing Ca®>" near the anode was
observed, which was explained with the ion flux
and zero current theories under the coupled elec-
trical and chemical fields.

(3) To apply external charge to the already existing or
newly inserted sheet piles was proposed as the
anti-corrosion method. But careful attention
should be paid on the multi-ion profiles in the
whole system with respect to the alkali-silica reac-
tion. And the mechanical behavior of the under-
ground structures should also be clarified along
with the anti-corrosion application.
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